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Anticancer drugs can fail to kill cancer cells for various 
reasons. Drugs are usually given systemically and are 
therefore subject to variations in absorption, metabolism 
and delivery to target tissues that can be specific to indi-
vidual patients. Tumours can be located in parts of the 
body into which drugs do not easily penetrate, or could 
be protected by local environments due to increased tis-
sue hydrostatic pressure or altered tumour vasculature.

By analogy to the study of antibiotic resistance in 
microorganisms, research on drug resistance in cancer 
has focused on cellular resistance due to either the specific 
nature and genetic background of the cancer cell itself, or 
the genetic changes that follow toxic chemotherapy. Until 
recently, the primary method for identifying mechanisms 
of multidrug resistance (MDR) was to select surviving 
cancer cells in the presence of cytotoxic drugs and use 
cellular and molecular biology techniques to identify 
altered genes that confer drug resistance on naive cells. 
Such studies indicate that there are three major mecha-
nisms of drug resistance in cells: first, decreased uptake 
of water-soluble drugs such as folate antagonists, nucle-
oside analogues and cisplatin, which require transporters 
to enter cells; second, various changes in cells that affect 
the capacity of cytotoxic drugs to kill cells, including 
alterations in cell cycle, increased repair of DNA damage, 
reduced apoptosis and altered metabolism of drugs; and 
third, increased energy-dependent efflux of hydrophobic 
drugs that can easily enter the cells by diffusion through 
the plasma membrane.

Of these mechanisms, the one that is most commonly 
encountered in the laboratory is the increased efflux of a 
broad class of hydrophobic cytotoxic drugs that is medi-
ated by one of a family of energy-dependent transporters, 

known as ATP-binding cassette (ABC) transporters. 
First described in the 1970s (BOX 1), several members of 
the ABC transporter family, such as P-glycoprotein (Pgp, 
also known as ABCB1 or MDR1), can induce MDR. The 
broad substrate specificity and the abundance of ABC 
transporter proteins might explain the difficulties faced 
during the past 20 years in attempting to circumvent 
ABC-mediated MDR in vivo. Cancer pharmacologists 
have worked to develop drugs that either evade efflux or 
inhibit the function of efflux transporters, and although 
progress in this area has been slow, the rationale for 
this approach is still strong and suggestions for future 
directions in this field are included in this review.

Recently, bioinformatic approaches, taking advantage 
of large drug databases tested across well-character-
ized cell lines, have allowed the identification of several 
potential cytotoxic substrates recognized by different ABC 
transporters. In addition, pharmacokinetic analyses and 
the study of knockout mice have revealed important roles 
of several ABC transporters in the absorption, excretion 
and distribution of drugs. ABC transporters are essential 
for many cellular processes that require the transport of 
substrates across cell membranes. Therefore, ABC trans-
porters have an important role in drug discovery and devel-
opment in several areas, including multidrug-resistant 
cancer and drug targeting to specific compartments.

The ABC transporter family
ABC transporters, named after their distinctive ATP-
binding cassette domains, are conserved proteins that 
typically translocate solutes across cellular membranes1. 
The functional unit of an ABC transporter contains two 
transmembrane domains (TMDs) and two nucleotide 
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Abstract | Effective treatment of metastatic cancers usually requires the use of toxic 
chemotherapy. In most cases, multiple drugs are used, as resistance to single agents occurs 
almost universally. For this reason, elucidation of mechanisms that confer simultaneous 
resistance to different drugs with different targets and chemical structures — multidrug 
resistance — has been a major goal of cancer biologists during the past 35 years. Here, we 
review the most common of these mechanisms, one that relies on drug efflux from cancer 
cells mediated by ATP-binding cassette (ABC) transporters. We describe various approaches 
to combating multidrug-resistant cancer, including the development of drugs that engage, 
evade or exploit efflux by ABC transporters.
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AUC
The AUC is a measure of drug 
exposure, derived from the 
plasma drug concentration 
depicted as a function of time. 
It is used to determine 
pharmacokinetic parameters, 
such as clearance or 
bioavailability, and provides 
guidelines for dosing and 
comparing the relative 
efficiency of different drugs.

(ATP)-binding domains (NBDs). Transporters such as 
ABCG2 (also known as mitoxantrone-resistance protein 
(MXR) or breast cancer resistance protein (BCRP)) that 
contain only a ‘half set’ (one TMD and one NBD) form 
dimers to generate a ‘full’ transporter2. Structures of 
bacterial ABC transporter proteins suggest that the two 
NBDs form a common binding site where the energy of 
ATP is harvested to promote efflux through a pore that 
is delineated by the transmembrane helices3.

The human genome contains 48 genes that encode 
ABC transporters, which have been divided into 
seven subfamilies labelled A–G4. Diverse substrates 
are translocated by ABC transporters, ranging from 
chemotherapeutic drugs to naturally occurring bio-
logical compounds. Although several members of the 
superfamily have dedicated functions involving the 
transport of specific substrates, it is becoming increas-
ingly evident that the complex physiological network of 
ABC transporters has a pivotal role in host detoxification 
and protection of the body against xenobiotics. This role 
is revealed by the tissue distribution of ABC transport-
ers, which are highly expressed in important pharma-
cological barriers, such as the brush border membrane 
of intestinal cells, the biliary canalicular membrane of 
hepatocytes, the lumenal membrane in proximal tubules 
of the kidney and the epithelium that contributes to the 
blood–brain barrier (BBB) (FIG. 1).

Traditionally, the absorption, distribution, metabo-
lism, excretion and/or toxicity (ADMET) of a drug were 
thought to be governed by the physicochemical properties 
of the molecule, protein binding and/or biotransforma-
tion5. The capacity of transport proteins to reduce oral 
bioavailability and alter tissue distribution has obvious 
implications for pharmaceutical drug design. Indeed, the 
identification of transporters that influence the disposi-
tion and safety of drugs has become a new challenge for 
drug discovery programmes. It is essential to know, first, 
whether drugs can freely cross pharmacological barriers 
or whether their passage is restricted by ABC transport-
ers; and, second, whether drugs can influence the pas-
sage of other compounds through the inhibition of ABC 
transporters. Consequently, the evaluation of transport 

susceptibility of drug candidates has become an impor-
tant step in the development of novel therapeutics, and the 
pharmaceutical industry has adopted routine evaluation of 
Pgp susceptibility in the drug discovery process (BOX 2).

Generation of mice deficient in the mdr1a (abcb1a) 
and mdr1b (abcb1b) genes, or both, has provided a valu-
able tool for the assessment of the contribution of Pgp to 
drug disposition in vivo6. Surprisingly, mdr1a/1b double 
knockout mice are viable and fertile — almost indistin-
guishable from their wild-type littermates, suggesting 
that pharmacological modulation of human Pgp could 
represent a safe and effective strategy to thwart multi drug-
resistant cancers. The AUC (area under the plasma concen-
tration versus time curve) of orally administered taxol was 
found to be significantly higher in the double knockout 
mice, indicating that Pgp expression at the intestinal lumen 
can limit oral drug bioavailability7. Further analysis of the 
knockout animals has demonstrated that the absence of 
Pgp has a profound effect on the tissue distribution of sub-
strate compounds. So, if a drug is subject to Pgp-mediated 
efflux, its pharmacokinetic profile will be substantially 
altered by the use of Pgp inhibitors. Consistent with its 
high expression in brain capillary cells, Pgp also presents a 
barrier to hydrophobic compounds that would otherwise 
penetrate the BBB by passive diffusion. Pgp can thereby 
reduce the efficacy of agents targeted to the central nerv-
ous system (CNS) to treat epilepsy, central infections 
(such as HIV) or brain tumours8. Penetration of CNS-
targeted compounds through the BBB can be estimated 
by comparing the brain-to-plasma ratios of drugs in Pgp-
deficient mice to those of normal mice (FIG. 2). However, 
in vivo studies are not compatible with high-throughput 
screening (HTS) of drugs, and the knockout mouse sys-
tem can provide misleading information, because there 
are significant species differences between the substrate 
specificities of human and mouse Pgp9.

ABC transporters and in vitro MDR
Fulfilling their role in detoxification, several ABC trans-
porters have been found to be overexpressed in cancer 
cell lines cultured under selective pressure (BOX 1). So far, 
tissue culture studies have consistently shown that the 
major mechanism of MDR in most cultured cancer cells 
involves Pgp, multidrug resistance associated-protein 1 
(MRP1, also known as ABCC1) or ABCG2. However, 
cells selected to be resistant to various cytotoxic agents 
were found to overexpress additional ABC transporters, 
and several more were found to confer drug resistance 
in transfection studies. Current understanding indi-
cates that at least 12 ABC transporters from four ABC 
subfamilies have a role in the drug resistance of cells 
maintained in tissue culture (FIG. 3).

ABCB subfamily. Pgp, a member of the ABCB subfamily, 
stands out among ABC transporters by conferring the 
strongest resistance to the widest variety of compounds. 
Pgp transports drugs that are central to most chemother-
apeutic regimens, including (but certainly not limited to) 
vinca alkaloids, anthracyclines, epipodophyllotoxins and 
taxanes (for a comprehensive review see REF. 10). Pgp is 
normally expressed in the transport epithelium of the 

Box 1 | Discovery of ABC transporters involved in multidrug resistance

In 1973, Dano13 noted the active outward transport of daunomycin in multidrug-
resistant Ehrlich ascites tumour cells. Subsequent work showed that the ‘reduced drug 
permeation’ in multidrug-resistant cells is associated with the presence of a cell-
surface glycoprotein, termed P-glycoprotein (Pgp)127. Based on the presence of specific 
conserved sequences, Pgp was recognized to be an ATP-binding cassette (ABC) 
transporter protein and was proposed to function as an efflux pump128,129–132. A decade 
later, a human small-cell lung cancer cell line (H69), showing resistance to doxorubicin 
without increasing expression of Pgp, was identified133. Similar to cells overexpressing 
Pgp, H69-derivatives showed a combined drug accumulation defect and cross-
resistance to a broad range of anticancer agents, including anthracyclines, vinca 
alkaloids and epipodophyllotoxins134,135. Analysis indicated the increased expression of 
a novel ABC transporter, termed MRP1 (multidrug resistance-associated protein 1)136. 
This finding also suggested that a more systematic approach could be used to discover 
additional Pgp-independent mechanisms of drug resistance. Using the Pgp-inhibitor 
verapamil in conjunction with cytotoxic agent selection resulted in the discovery of a 
third ABC transporter, named ABCG2 (also known as mitoxantrone resistance protein 
(MXR) and breast cancer resistance protein (BCRP))137–139.
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liver, kidney and gastrointestinal tract, at pharmacologi-
cal barrier sites, in adult stem cells and in assorted cells 
of the immune system11,12.

In the first study that described MDR, it was also 
shown that sensitization of resistant cells was achievable 
with modulators that prevent the export of cytotoxic 

drugs13. A later finding revealed that in vitro and in vivo 
resistance of P388/VCR cells to vincristine was reversible 
with verapamil, which immediately suggested the pos-
sible therapeutic use of inhibitors to improve the efficacy 
of chemotherapy substrates of Pgp14. Pgp-mediated drug 
transport is modulated by a wide range of agents. Indeed, 

Figure 1 | Summary of the pharmacological role of ATP-binding cassette transporters. ATP-binding cassette (ABC) 
transporters act to prevent the absorption of orally ingested or airborne toxins, xenobiotics or drugs. Highly sensitive 
compartments, such as the brain, foetus or testes are protected by additional barriers. Enterohepatic circulation, as well as 
the excretion of compounds, is regulated by ABC transporters in the liver, gastrointestinal (GI) tract and the kidney. 
Although the systemic localization of ABC transporters at absorptive barriers provides an effective means to protect 
against dietary toxins, it also decreases the bioavailability of orally administered drugs and reduces drug disposition to 
physiological sanctuaries152. BBB, blood–brain barrier; BCSFB, blood–cerebrospinal fluid barrier; CSF, cerebrospinal fluid.
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Phase II metabolic products
Cellular defence mechanisms 
against toxins are usually 
divided into several steps. ABC 
proteins hinder the cellular 
uptake of compounds (Phase 
0). Should toxins enter the 
cells, they are subject to 
chemical modification 
(Phase I), and subsequent 
conjugation (Phase II). As a 
result of Phase I–II metabolism, 
toxins become more 
hydrophilic, and are expelled 
from the cells via mechanisms 
that involve ABC transporters 
(Phase III).

Enterohepatic circulation
Before entering systemic 
circulation, orally ingested 
drugs are directed to the liver 
via the portal vein. In the liver, 
drugs can be metabolized and 
sequestered to the gut. The 
enterohepatic circulation is an 
excretion–reabsorption cycle, 
in which drugs sequestered 
through the bile are 
reabsorbed in the gut.

due to the promiscuity of the transporter, it has been 
relatively easy to find non-toxic, high-affinity substrates 
that block transport in a competitive or non-competitive 
manner15. Inhibitors of Pgp and other transporters are 
extensively discussed later in this article.

The two additional members of the ABCB subfamily 
implicated in drug resistance are normally expressed in 
the liver: ABCB11 (‘sister of Pgp’16,17), a bile salt trans-
porter, and ABCB4 (MDR3), a phosphatidylcholine flip-
pase18,19. Mutations in the genes encoding these proteins 
cause various forms of progressive familial intrahepatic 
cholestasis20. Transfection of ABCB11 into cells mediates 
paclitaxel resistance21, and MDR3 has been shown to pro-
mote the transcellular transport of several Pgp substrates, 
such as digoxin, paclitaxel and vinblastine22.

ABCC subfamily. Whereas Pgp transports unmodified 
neutral or positively charged hydrophobic compounds, 
the ABCC subfamily members (the MRPs) also trans-
port organic anions and Phase II metabolic products. 
Indeed, this synergism between the efflux systems and 
the metabolizing/conjugating enzymes provides a for-
midable alliance for drug elimination. In addition to the 
MDR-like core structure consisting of two NBDs and 
two TMDs, MRPs are composed of additional domains. 
ABCC1, ABCC2, ABCC3, ABCC6 and ABCC10 con-
tain an amino (N)-terminal membrane-bound region 
connected to the core by a cytoplasmic linker. The four 
remaining members (ABCC4, ABCC5, ABCC11 and 
ABCC12) lack the N-terminal TMD (but not the linker 
region, which is characteristic of the subfamily23).

ABCC1 (widely known as MRP1) is expressed in a 
wide range of tissues, clinical tumours24 and cancer cell 
lines25. MRP1 confers resistance to several hydropho-
bic compounds that are also Pgp substrates (FIG. 3). In 
addition, like other members of the ABCC subfamily, 
MRP1 can export glutathione (GSH), glucuronate or sul-
phate conjugates of organic anions. MRP1 homologues 
implicated in resistance to anticancer agents include 
ABCC2 (MRP2), ABCC3 (MRP3), ABCC6 (MRP6) and 
ABCC10 (MRP7).

In contrast to most ABCC subfamily members, which 
are typically expressed in basolateral membranes, MRP2 is 
localized in the apical membranes of polarized cells, such 
as hepatocytes and enterocytes. So, MRP2 has a pivotal 
role in the export of organic anions, unconjugated bile 
acids and xenobiotics into the bile, and also contributes to 
protection against orally ingested drugs26. The phenotype 
associated with mutations in the gene encoding MRP2 is 
called Dubin–Johnson syndrome, a condition in which 
the lack of hepatobiliary transport of non-bile salt organic 
anions results in conjugated hyperbilirubinaemia27. MRP2 
transports many of the same drugs as MRP1, with some 
notable differences (FIG. 3). Cells selected in cisplatin, 
arsenite or 9-nitro-camptothecin show increased MRP2 
expression28–31. Although MRP2 has been detected in 
clinical specimens of cancers of renal, gastric, colorectal 
and hepatocellular origin, its expression has not been 
found to be predictive of response to chemotherapy.

Despite the similarity of their sequences, MRP3 
transports fewer compounds than MRP1 or MRP2. 
Interestingly, MRP3 has a preference for glucuronides over 
GSH conjugates. Substrates of MRP3 include anticancer 
drugs and some bile acid species, as well as several glu-
curonate, sulphate and GSH conjugates32. MRP3 is mainly 
expressed in the kidney, liver and gut33, which suggests a 
role for this protein in the enterohepatic circulation of bile 
salts. However, recent analysis of mrp3-deficient mice has 
not revealed any abnormalities in bile acid homeostasis, 
indicating that Mrp3 does not have a key role in bile salt 
physiology34,35. MRP3 expression has been observed in 
cancer tissues36,37, and a correlation with doxorubicin 
resistance in lung cancer has been reported38. However, as 
MRP3 does not transport anthracyclines (FIG. 3), this cor-
relation is not likely to be based on a causal relationship.

Intriguingly, mutations of the MRP6 gene cause pseu-
doxanthoma elasticum, a systemic connective tissue 
disorder that affects elastin fibres of the skin, retina and 
blood vessels39. Studies indicate that MRP6-transfected 
cells become resistant to natural product agents, includ-
ing etoposide, teniposide, doxorubicin and daunorubicin, 
whereas MRP7 is a resistance factor for taxanes40,41. As 
overexpression of MRP3, MRP6 or MRP7 has not been 
detected in resistant cell lines, their involvement in clini-
cally relevant drug resistance or the physiological defence of 
tissues against xenobiotic compounds seems limited42,43.

The ABCC subfamily contains four additional mem-
bers that lack the N-terminal TMD. ABCC4 (MRP4), 
and ABCC5 (MRP5) confer resistance to nucleoside 
analogues such as 6-mercaptopurine and 6-thiogua-
nine. Overexpression and amplification of the MRP4 
gene correlates with increased resistance to PMEA (9-
(2-phosphonylmethoxyethyl)adenine) and efflux of azi-
dothymidine monophosphate from cells and, therefore, 
with resistance to this drug44. The function of ABCC11 
(MRP8) and ABCC12 (MRP9) is relatively unexplored. 
Cells overexpressing MRP8 are resistant to commonly 
used purine and pyrimidine nucleotide analogues45 
and to NSC 671136, a candidate anticancer drug tested 
against the NCI60 cancer cell panel25. In addition, MRP8 
is thought to participate in physiological processes 
involving bile acids and conjugated steroids46.

Box 2 | Assessment of susceptibility to transport by P-glycoprotein

It has been a challenge to find reliable cell-based or biochemical tools that enable 
rapid analysis of susceptibility of drug candidates to transport by P-glycoprotein (Pgp) 
in the pharmaceutical setting. Pgp-mediated transport is coupled to ATP hydrolysis, 
which is often stimulated by transported substrates10,140. To determine whether a 
candidate drug is a substrate or inhibitor of Pgp, measurement of ATPase activity can 
be carried out in a high-throughput manner using isolated membrane vesicles from 
cells expressing high concentrations of Pgp141. However, there are substrates and 
inhibitors that have little effect on the Pgp-mediated ATPase activity. Consequently, 
the susceptibility of compounds to Pgp-mediated transport is usually evaluated 
directly in intact cell systems, using cells that overexpress Pgp. In vivo, drugs have to 
cross pharmacological barriers to be absorbed, distributed or excreted. This 
transcellular movement is best modelled by monolayer efflux assays. In these assays, 
polarized epithelial or endothelial cells expressing various ATP-binding cassette 
transporters are grown on semipermeable filters. Pgp, localized on the apical surface of 
the cells, reduces transport in the apical-to-basolateral direction (that is, absorption 
from the gastrointestinal lumen to the blood) and increases transport of drug 
substrates in the basolateral to apical direction (FIG. 2). This system provides evaluation 
of direct transport and is widely used for the assessment of Pgp susceptibility.

R E V I E W S

222 | MARCH 2006 | VOLUME 5  www.nature.com/reviews/drugdisc



© 2006 Nature Publishing Group 

 

Therapeutic programme
compound repository

Monolayer efflux assays 

BA:AB <3.0
Papp >4 × 10–6 cm sec–1

In vivo studies

BA:AB >3.0
Papp <4 × 10–6 cm sec–1

CNS penetration:
Mdr1a/b(–/–)/wild-type 
Brain-to-plasma ratio <0.5

CNS penetration:
Mdr1a/b(–/–)/wild-type 
Brain-to-plasma ratio >0.5

Continue development

Chemical
modification

a

b

c

Apical

Basal

AB

BA

Taken together, data from the literature indicate that 
several members of the ABCC (MRP) subfamily that 
have unrelated primary functions can be subverted 
for drug transport. However, it is still unclear whether 
experiments involving cells engineered to overexpress 
ABC transporters can be interpreted to suggest a general 
role for MRPs in clinical anticancer drug resistance.

ABCG subfamily. In contrast to most MRPs (with the 
possible exception of MRP1), ABCG2 (MXR/BCRP) 
clearly has the potential to contribute to the drug resist-
ance of cancer cells. ABCG2, which is overexpressed 
in several cell lines selected for anticancer drug resist-
ance, is a high-capacity transporter with wide substrate 

specificity. Transported substrates include cytotoxic 
drugs, toxins and carcinogens found in food products, 
as well as endogenous compounds47,48. Although several 
ABC transporters can transport methotrexate, ABCG2 
has been shown to extrude glutamated folates, suggest-
ing that it can provide resistance to both short- and 
long-term methotrexate exposure49. In addition, ABCG2 
can transport some of the most recently developed anti-
cancer drugs, such as 7-ethyl-10-hydroxycamptothecin 
(SN-38)50 or tyrosine kinase inhibitors51.

In all probability, the list shown in FIG. 3 will grow as 
new substrates or inhibitors are identified and additional 
ABC transporter proteins associated with decreased 
drug sensitivity of cancer cells are discovered. Screens 
carried out with the NCI60 cell panel indicate that there 
is a strong correlation between expression of several 
ABC transporters and decreased chemosensitivity, and 
also suggest that as many as 31 of the 48 ABC transport-
ers could blunt the potency of the antitumour drugs 
screened in the study25. In addition, many other trans-
porters, not related to the ABC family, potentially have a 
role in drug sensitivity and disposition. Experiments are 
underway to determine which of these can indeed confer 
drug resistance to tumours.

Significance of ABC transporters in cancer
Much has been learned about ABC transporters since 
MDR was first described52. Despite the wealth of infor-
mation collected about the biochemistry and substrate 
specificity of ABC transporters, translation of this 
knowledge from the bench to the bedside has proved to 
be unexpectedly difficult. Of the transporters shown in 
FIG. 3, only inhibitors of Pgp, and to a lesser extent MRP1 
and ABCG2, have been evaluated in clinical trials. In vitro, 
these three transporters efflux a broad range of chemo-
therapeutics used clinically for first- and second-line 
treatment of cancer. In that setting, inhibitors can often 
dramatically sensitize drug-resistant cell lines to known 
substrates. It is to be expected that this same effect would 
also occur in vivo. So, are ABC transporters important 
clinically, and does their inhibition translate into improved 
patient survival? Answers to the first part of this question 
come mainly from correlative studies evaluating the effect 
of Pgp expression on patient survival, whereas answers to 
the latter emanate from trials that combine chemotherapy 
with targeted inhibitors of Pgp-mediated drug transport.

Impact of ABC transporters on tumour response and 
patient survival. The role of ABC transporters in clinical 
anticancer resistance has been difficult to assess53. As is 
the case for most potentially useful cancer biomarkers, 
no universally accepted guidelines for analytical or clini-
cal validation exist. Differences in tissue collection meth-
odologies (for example, whole tissue versus laser-capture 
microdissection), molecular targets (for example, mRNA 
versus protein) and protocols have limited the ability 
to compare results across institutions. In addition, the 
absence of standardized criteria to score expression and 
effect has hampered adequate clinical validation.

Deciphering the impact of ABC transporter expres-
sion on patient survival is also challenging because of the 

Figure 2 | General scheme for evaluating P-glycoprotein susceptibility in early 
discovery and development of pharmaceutical drugs. a | Passive permeability 
measured as the net apparent permeability (Papp) for compounds across polarized 
monolayers (for example, LLC-PK1 or Madin–Darby canine kidney II cells) in the 
absorptive (apical-to-basal; AB) and the secretory (basal-to-apical; BA) direction provides 
an indication of the capacity of a compound to access the systemic circulation when 
administered orally. A comparison of the BA:AB ratios obtained in parental cells and 
P-glycoprotein (Pgp)-overexpressing derivatives define the involvement of Pgp-mediated 
efflux. The BA:AB ratio observed in Pgp-overexpressing monolayers indicates the degree 
of Pgp-mediated efflux. Typically, BA:AB ratios of ≥3.0 suggest that the compound is a 
substrate of Pgp. However, the balance between Papp and the BA:AB ratio should be 
considered, as a compound with high permeability can overcome the active efflux. For 
compounds that have low permeability and/or high active efflux ratios, chemical 
modification could be required to ensure oral bioavailability. b | In vivo studies evaluating 
bioavailability can further define the systemic exposure of a compound, taking into 
consideration factors other than passive permeability (such as metabolism). Evaluating 
the brain-to-plasma ratio of compounds in mdr1a/mdr1b (–/–) and wild-type mice 
provides an indication of the capacity of the drug to penetrate the central nervous 
system (CNS). In case of limited exposure and/or low CNS penetration (depending on the 
therapeutic intent), chemical modification might be required. c | Compounds that have 
adequate Papp measures and limited Pgp susceptibility, as determined by in vitro and 
in vivo screens, would be considered for continued development.
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Figure 3 | Substrates and inhibitors of ATP-binding cassette transporters. a | Overlapping substrate specificities of 
the human ATP-binding cassette (ABC) transporters confering drug resistance to cancer cells. A single drug can be 
exported by several ABC transporters (rows), and each ABC transporter can confer characteristic resistance patterns 
to cells (columns). To determine which ABC transporters are involved in multidrug resistance (MDR), two different 
experimental procedures are common. Cells could be selected in increasing concentrations of a cytotoxic drug, 
which could result in the increased expression of a specific ABC transporter (see green boxes representing drug–gene 
pairs in which an ABC transporter was found to be overexpressed in cell lines selected for resistance to the respective 
drug). Resistant cells overexpressing a single ABC transporter often show characteristic cross-resistance to other, 
structurally unrelated, drugs (red boxes). Some ABC transporters were found to confer drug resistance only in 
transfection studies, in which cells are engineered to overexpress a given transporter. On transfection, cells become 
resistant to compounds that are substrates for transport (red boxes). White boxes denote unexplored or absent 
drug–gene relationships. b | The ability of ABC transporters to alter cell survival, drug transport and/or drug 
accumulation can be inhibited or altered by various modulators (yellow boxes). As in a, white boxes denote unexplored 
or absent drug–gene relationships. *The transport of these drugs by ABCG2 is dependent on an amino acid variation 
at position 482 (wild type is R; variants include R482G and R482T). Numbers in boxes refer to references. 
AZT, azidothymidine; 5-FU, fluorouracil; PMEA, 9-(2-phosphonylmethoxyethyl)adenine.
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heterogeneity of tumours that have Pgp- and non-Pgp-
mediated mechanisms of drug resistance. The resistance 
of tumours originating from tissues expressing high levels 
of Pgp (such as colon, kidney or the adrenocortex) often 
extends to drugs that are not subject to Pgp-mediated 
transport, suggesting that ‘intrinsically resistant’ cancer 
is also protected by non-Pgp-mediated mechanisms. 
Evidence linking Pgp expression with poor clinical 
outcome is therefore more conclusive for breast cancer, 
sarcoma and certain types of leukaemia, because Pgp-
positive patients with these cancers can be compared 
with Pgp-negative patients of the same cancer type. As an 
example, a meta-analysis of 31 breast cancer trials showed 
a threefold reduction in response to chemotherapy among 
tumours expressing Pgp after treatment54. In another 
study, Pgp was found to be expressed in as many as 61% 
of pre-treatment soft tissue sarcomas (STS); even higher 
expression occurred following therapy with doxorubicin55. 
This is likely to be clinically important as doxorubicin is 
a known Pgp substrate and one of the main chemothera-
peutic agents commonly used to treat STS. However, the 
validity of these findings remains controversial as Pgp 
positivity was variably defined throughout the trials, a 
limitation that is inherent to numerous studies assessing 
the impact of Pgp expression on patient survival.

In contrast to solid tumours, haematological malignan-
cies are much easier to collect and purify. This relative sam-
ple homogeneity has allowed a more reliable determination 
of Pgp expression in leukaemic cells using techniques such 
as immunoflow cytometry and RT-PCR (reverse tran-
scription-polymerase chain reaction). Functional assays, 
such as those using flow cytometry to measure efflux of 
fluorescent Pgp substrates (for example, Calcein-AM and 
rhodamine 123) from leukaemic cells, often complement 
expression analysis56–58. Using these techniques, more than 
a third of leukaemic samples are found to be positive for 
Pgp expression, and so the adverse impact of Pgp expres-
sion on patient survival or response rate has been most 
comprehensively evaluated for haematological malignan-
cies, particularly acute myelogenous leukaemia (AML) 
and myelodysplastic syndrome (MDS). Pgp expression in 
patients with AML has consistently been associated with 
reduced chemotherapy response rates and poor survival, 
and it was found to be an independent prognostic variable 
for induction failure in adult AML59,60.

Although compelling data exist indicating an impor-
tant role for Pgp in determining efficacy of chemotherapy, 
the relevance of the other ABC transporters in clinical 
MDR is still unknown. MRP1 is not a significant factor in 
drug resistance in AML61, and its prognostic implication 
in chronic lymphocytic and promyelocytic leukaemia, 
non-small-cell lung cancer (NSCLC) and breast cancer 
remains controversial62–64. Even less is known clinically 
about ABCG2 (REF. 65). Like adult stem cells, cancer stem 
cells express high levels of ABC transporters, including 
Pgp and ABCG2. According to the cancer stem cell 
model, this population of drug-resistant pluripotent 
cells defies treatment and serves as an unrestricted 
reservoir for drug-resistant tumour relapse66. Although 
ABCG2 is expressed in leukaemic CD34+38– stem cells, its 
functional relevance seems limited67.

Efforts to overcome MDR with Pgp inhibitors. The clinical 
importance of Pgp might also be determined through 
trials designed to abrogate Pgp function. Towards this 
end, less than 10 years after the discovery of Pgp-medi-
ated MDR, the first Phase I and II clinical trials began 
to test the clinical potential of Pgp inhibitors. Initial 
trials used ‘first-generation’ Pgp inhibitors, including 
verapamil, quinine and cyclosporine (also known as 
cyclosporin A), which were already approved for other 
medical purposes. In general, these compounds were 
ineffective or toxic at the doses required to attenuate 
Pgp function. Despite these problems, a randomized 
Phase III clinical trial showed the benefit of addi-
tion of cyclosporine to treatment with cytarabine and 
daunorubicin in patients with poor-risk AML68. Similarly, 
quinine was shown to increase the complete remission 
rate as well as survival in Pgp-positive MDS cases treated 
with intensive chemotherapy69, suggesting that successful 
Pgp modulation is feasible. However, several other trials 
failed to show improvement of the outcome and toxic 
side effects were common70 (TABLE 1). 

Promising early clinical trials encouraged further 
development. The second generation of inhibitors were 
devoid of side effects related to the primary toxicity 
of the compounds. For example, the R-enantiomer of 
verapamil and the cyclosporin D analogue PSC-833 
(Valspodar) antagonized Pgp function without block-
ing calcium channels or immunosuppressive effects, 
respectively71. PSC-833 has been tested most frequently 
in clinical trials (TABLE 1), albeit with little success. 
Characteristic of the failures of second-generation 
inhibitors, PSC-833 induced pharmacokinetic interac-
tions that limited drug clearance and metabolism of 
chemotherapy, thereby elevating plasma concentra-
tions beyond acceptable toxicity. To preserve patient 
safety, empirical chemotherapy dose reductions were 
necessary; however, because pharmacokinetic interac-
tions were generally unpredictable, some patients were 
probably under-dosed whereas others were over-dosed. 
Related to these problems, a Phase III trial using PSC-
833 in previously untreated patients with AML who were 
>60 years old was closed early due to excessive mortality 
during induction in the experimental arm72 (TABLE 1). A 
subsequent dose-escalation trial involving 410 patients 
with AML who were <60 years old revealed an overall 
survival advantage in an unplanned subset of patients 
of <45 years old73. That apparent benefit has not been 
duplicated, and it is unlikely to be, as development of 
PSC-833 has been discontinued. Similarly, development 
of another second-generation inhibitor showing initial 
promise (VX-710; biricodar) has been curtailed74.

Third-generation inhibitors are designed specifically 
for high transporter affinity and low pharmacokinetic 
interaction. Inhibition of cytochrome P450 3A, which 
is responsible for many adverse pharmacokinetic effects 
with previous-generation inhibitors (BOX 3), has gener-
ally been avoided with the latest generation of inhibitors, 
including laniquidar (R101933), oc144-093 (ONT-093), 
zosuquidar (LY335979), elacridar (GF-120918)75 and 
tariquidar (XR9576)76. Tariquidar has the added benefit 
of extended Pgp inhibition, as a single intravenous dose 
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Table 1 | Characteristics and results of completed and Phase III clinical trials with ABC transporter inhibitors

Year 
closed

Trial 
group

Number of 
participants 

Cancer type Modulator Anticancer 
drugs

Dose 
reduced

Func-
tional 
assay

Outcome Refs

1992 223 Breast Quinidine Epirubicin No No No benefit 229

1993 68 NSCLC Verapamil Vindesine, 
Ifosfamide

No No Improved OS 230

1993 226 SCLC Verapamil CAVE No No No benefit 231

1995 200 Myeloma Verapamil VAD No No No benefit 232

1995 130 SCLC Megestrol 
acetate

CAV/EP No No No benefit 233

1995 MRC 235 Relapsed and 
refractory AML

Cyclosporine ADE  No No No benefit 234

1995 HOVON, 
MRC 
(C302)

428 AML PSC-833 Daunorubicin, 
cytarabine, 
etoposide

No Yes No benefit 235

1996 GFM 131 High-risk MDS Quinine Mitoxantrone, 
cytarabine

No No Improved OS in Pgp-
positive patients 

69, 
236

1996 Novartis 
(C301)

256 AML PSC-833 Mitoxantrone, 
etoposide, 
cytarabine

No No No benefit 237

1996 315 Poor-risk acute 
leukaemia

Quinine Mitoxantrone, 
cytarabine

No Yes No benefit 238

1998 SWOG 226 Poor-risk AML, 
RAEB-t

Cyclosporine Dauno rubicin, 
cytarabine

No Serum Improved OS in 
cyclosporine group

68

1999 GEO-
LAMS

425 De novo AML Quinine Idarubicine, 
cytarabine, 
mitoxantrone

No Yes Significant 
improvement in 
the CR rate in Pgp-
positive patients. No 
OS advantage

239

1999 CALGB 
(9720)

120 (age >60 
years)

Untreated AML PSC-833 Daunorubicin, 
etoposide, 
cytarabine

Yes No Terminated  early 
owing to secondary 
toxicity

72

2000 238 Advanced 
and recurrent 
breast cancer

MS-209 Cyclo-
phosphamide, 
doxorubicin, 
fluorouracil

– – No benefit 240

2000 CALGB 
(9621)

410 (age <60 
years)

Untreated AML PSC-833 Daunorubicin, 
etoposide, 
cytarabine

Yes No No OS advantage 
for those >45 years; 
survival benefit for 
those <45 years

73

2000 99 Breast Verapamil Vindesine, 5-FU No No Improved OS and RR 242

2001 EORTC, 
HOVON 

81 Myeloma Cyclosporine VAD No No No benefit 237

2002 762 Ovarian PSC-833 Carboplatin, 
paclitaxel

Yes – No benefit 241

2003 ECOG 
(E2995)

144 Refractory 
AML, high-risk 
MDS

PSC-833 Mitoxantrone, 
etoposide, 
cytarabine

Yes – No benefit 243

2003 304 NSCLC PSC-833 Carboplatin, 
paclitaxel

Yes – Terminated early 
owing to secondary 
toxicity

‡

2003 CALGB 
(19808)

302 AML PSC-833 IL-2 No – Results pending §

2005 ECOG 450 AML, MDS LY335979 Daunorubicin, 
cytarabine

No Yes Results pending §

–, Unknown. ‡Novartis; §Cancer.gov. 5-FU, fluorouracil; ADE, cytarabine, daunorubicin and etoposide; AML, acute myelogenous leukaemia; CAVE, 
cyclophosphamide, doxorubicin, vincristine and etoposide; CAV/EP, alternate treatment with CAV regimen and a combination of cisplatin and etoposide; 
CR, complete response; IL, interleukin; MDS, myelodysplastic syndrome; NSCLC, non-small-cell lung cancer; OS, overall survival; Pgp, P-glycoprotein; 
RAEB-t, refractory anaemia with excess of blasts in transformation; RR, response rate; SCLC, small-cell lung cancer; VAD, vincristine, adriamycin and 
dexamethasone.
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inhibited efflux of rhodamine from CD56+ cells 
(biomarker lymphoid cells that express Pgp) for at least 
48 hours77. Several later-generation inhibitors act on 
multiple ABC transporters (FIG. 3). Biricodar (VX-710) 
and GF-120918, for example, bind Pgp as well as MRP1 
and ABCG2, respectively78. Although affinity for mul-
tiple drug transporters might extend the functionality 
of these inhibitors to Pgp-negative tumours showing 
MDR, the scope of possible side effects also increases. 
In 2002, Phase III clinical trials began using tariquidar 
as an adjunctive treatment in combination with first-line 
chemotherapy for patients with NSCLC. Despite the 
promising characteristics mentioned above, the studies 
were stopped early because of toxicities associated with 
the cytotoxic drugs (a full explanation for trial closure 
is not available)79. This study also illustrates a defect in 
experimental design, as there is no strong evidence to 
suggest that NSCLC expresses Pgp to a significant extent 
(BOX 4). Following the review of the aborted trials, the 
National Cancer Institute (NCI) has commenced fur-
ther exploratory Phase I/II and Phase III studies with 
tariquidar. Zosuquidar has recently been evaluated in 
patients with AML. Preliminary analysis indicates that 
zosuquidar can be safely given without chemotherapy 
dose reductions (L. D. Cripe, personal communication); 
trial endpoints have not yet been analysed.

Although Pgp is clearly established as a prognostic 
marker in adult AML, after more than three decades of 
research, the clinical benefit of modulating Pgp-mediated 
MDR is still in question. This is, in part, due to limitations 
of candidate inhibitors, and the inadequate design of the 
trials80 (BOXES 3,4). Although most trials using first- and 
second-generation inhibitors give reason to doubt the 
benefit of Pgp modulation, the verdict is still out. Clearly, 
the inhibitors used today are much improved from those 
used in the past, with greater substrate specificity, lower 
toxicity and improved pharmacokinetic profiles. Results 
from Phase III trials using third-generation inhibitors 
will be pivotal in determining whether inhibition of 
Pgp, or other ABC transporters, can result in improved 
patient survival.

Clinical trials have distilled the concept of an ideal 
transporter antagonist. The perfect reversing agent is 
efficient, lacks unrelated pharmacological effects, shows 
no pharmacokinetic interactions with other drugs, tack-
les specific mechanisms of resistance with high potency 
and is readily administered to patients. This might be 
too much to ask from a cancer drug that targets a net-
work of transporters with a pivotal role in ADMET. In 
more realistic terms, the ideal inhibitor should restore 
treatment efficiency to that observed in MDR-negative 
cases. Nevertheless, modulators are unlikely to improve 
the therapeutic index of anticancer drugs unless agents 
that lack significant pharmacokinetic interactions are 
found81. The search for such ‘fourth generation’ inhibi-
tors is ongoing, and there is no shortage of compounds 
showing in vitro sensitization of MDR cells. Similar to 
their predecessors, some of the emerging candidates are 
‘off the shelf ’ compounds (old drugs with new tricks), 
such as disulfiram, used to treat alcoholism82, or herbal 
constituents83 shown to inhibit Pgp function in vitro in 

concentrations that are compatible with clinical appli-
cability. Recent developments in pharmacology, such as 
the introduction of HTS technology and ‘screen-friendly’ 
synthetic chemical libraries, combined with improved 
understanding of substrate–protein interactions84 should 
enable rational planning and de novo synthesis of novel 
Pgp modulators85. In addition to traditional pharma-
cological modulation, more creative approaches have 
emerged in the literature. These strategies to engage, 
evade or even exploit efflux-based resistance mechanisms 
are discussed in the next section (FIG. 4).

Alternative approaches to targeting MDR
Peptides and antibodies that inhibit Pgp. Pgp-mediated 
drug resistance can be reversed by hydrophobic peptides 
that are high-affinity Pgp substrates. Such peptides, 
showing high specificity to Pgp, could represent a 
new class of compounds for consideration as potential 
chemosensitizers86. Small peptides corresponding to the 
transmembrane segments of Pgp act through a different 
mechanism. Peptide analogues of TMDs are believed 
to interfere with the proper assembly or function of the 
target protein, as was shown in experiments aimed at 
the in vitro87 or in vivo88 inhibition of G-protein-coupled 
receptors. Small peptides designed to correspond to the 
transmembrane segments of Pgp act as specific and 
potent inhibitors, suggesting that TMDs of ABC trans-
porters can also serve as templates for inhibitor design89. 
Studies suggest that immunization could be an alterna-
tive supplement to chemotherapy. A mouse monoclonal 
antibody directed against extracellular epitopes of Pgp 
was shown to inhibit the in vitro efflux of drug sub-
strates90. Similarly, immunization of mice with external 
sequences of the murine gene mdr1 elicited antibodies 
capable of reverting the MDR phenotype in vitro and 
in vivo, without eliciting an autoimmune response91.

Targeted downregulation of MDR genes. Selective down-
regulation of resistance genes in cancer cells is an emerg-
ing approach in therapeutics. Although in cell lines MDR 
is often a result of the amplification of the MDR1 gene, the 
overexpression of the protein has transcriptional compo-
nents as well. Regulation of Pgp expression is amazingly 
complex, and could include different mechanisms in nor-
mal tissues compared with cancer cells92. If mechanisms 
governing expression of Pgp in malignant cells were medi-
ated through tumour-specific pathways, cancer-specific 
approaches to circumvent Pgp overexpression could be 
developed with minimal effect on constitutive expression 
of normal cells93. Using peptide combinatorial libraries, 
Bartsevich et al.94 designed transcriptional repressors that 
selectively bind to the MDR1 promoter. Expression of the 
repressor peptides in highly drug-resistant cancer cells 
resulted in a selective reduction of Pgp levels and a marked 
increase in chemosensitivity94,95. Similarly, antagonists of 
the nuclear steroid and xenobiotic receptor (SXR), which 
coordinately regulate drug metabolism and efflux, can 
be used in conjunction with anticancer drugs to prevent 
the induction of Pgp96. Using technologies that enable the 
targeted regulation of genes — antisense oligonucleotides, 
hammerhead ribozymes and short-interfering RNA 
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(siRNA) — has produced mixed results. Sufficient down-
regulation of Pgp has proved difficult to attain and the 
safe delivery of constructs to cancer cells in vivo remains 
a challenge97,98. However, transcriptional repression is a 
promising new strategy that is not only highly specific but 
also enables the prevention of Pgp expression during the 
progression of disease.

Novel anticancer agents designed to evade efflux15. Several 
novel anticancer drugs are exported by ABC transporters, 
including irinotecan (and its metabolite SN-38), depsipep-
tide, imatinib (Gleevec; Novartis) and flavopiridol (FIG. 3). 
Moreover, the NCI60 screen suggests that a significant 
portion of the compounds in the drug development pipe-
line are substrates of ABC transporters25,53. Epothilones 
are novel microtubule-targeting agents with a paclitaxel-
like mechanism of action that are not recognized by 
Pgp, providing proof of the concept that new classes of 
anticancer agents that do not interact with the multidrug 
transporters can be developed to improve response to 
therapy. As most anticancer agents subject to efflux are 
currently irreplaceable in chemotherapy regimens, an 
attractive solution would be to chemically modify their 
susceptibility to being transported while retaining antineo-
plastic activity. Although such modifications frequently 
decrease the bioavailability or efficacy of drugs, some new 
agents have been developed using this approach99. The 
intracellular concentration of drugs can also be elevated by 
increasing the rate of influx. This ‘apparent circumvention’ 

of Pgp-mediated efflux can be achieved by increasing the 
lipophilicity of compounds (positive charge and degree 
of lipophilicity dictate, or at least influence, whether 
compounds are recognized by MDR1) or by stealth for-
mulations. For example, highly lipophilic anthracycline 
analogues100, such as annamycin and idarubicin, were 
shown to elicit a high remission rate in Pgp-positive 
AML cases with primary resistance to chemotherapy101. 
The efficacy of these drugs is currently being evaluated 
in the MRC AML15 trial59. Encapsulation of doxorubicin 
in polyethylene glycol-coated liposomes (PLD) might be 
safer and occasionally more effective than conventional 
doxorubicin102. PLD was found to cross the BBB, and 
seemed to overcome the MDR of tumours in preclinical 
models. The combination of this formulation with PSC-
833 suppressed tumour growth to an even greater degree 
in mouse xenograft models, providing proof-of-principle 
for Phase I studies103,104. A clever approach combines drugs 
encapsulated in polymeric micelles with ultrasound treat-
ment of tumours. As a consequence of the encapsulation, 
the systemic concentration and cellular uptake of the drug 
decreases, reducing unwanted side effects. To trigger drug 
release, the tumour is irradiated with ultrasound105.

Theoretically, the simplest way to counter efflux mecha-
nisms is to increase drug exposure of cancer cells through 
prolonged or higher-dose chemotherapy. Indeed, it could 
well be that the benefit of classical inhibitors was derived 
solely from the augmented dose intensity of the con-
comitantly administered chemotherapeutics, as opposed 
to the pharmacodynamic modulation of target cells106. 
Unfortunately, the therapeutic window of anticancer agents 
is very narrow, as even a slight increase in chemotherapy 
dosages results in potentially lethal side effects.

Exploiting drug resistance by protection of normal cells. 
A major dose-limiting factor of standard chemotherapy is 
bone-marrow toxicity. When transferred to haematopoi-
etic cells, Pgp was shown to protect the bone marrow, 
suggesting the feasibility of chemotherapeutic regimens 
at formerly unacceptable doses107. This approach can also 
be used in stem-cell-based gene therapy, as the co-expres-
sion of a drug-resistance protein with a therapeutic gene 
product in genetically modified stem cells allows both the 
in vitro enrichment of the corrected cells and in vivo drug 
selection during clinical gene therapy. Another strategy 
to selectively protect normal cells is based on drug com-
binations that include a cytotoxic and a cytoprotective 
agent108. In the presence of the protective agent, normal 
cells remain unharmed, whereas MDR cells, which pump 
out the protective agent, succumb to the cytotoxic therapy 
(‘unshielding of MDR cells’). For example, the non-Pgp-
substrate apoptosis-inducing agent flavopiridol was 
shown to selectively kill Pgp-expressing cells when used 
in combination with the caspase-inhibitor Z-DEVD-fmk, 
which is pumped out from MDR cells109.

Exploiting drug resistance by targeting MDR cells with 
peptides and antibodies. Ideally, therapy is directed 
against specific target cells. MDR cancer cells are eminent 
targets for destruction, and the high surface expression of 
Pgp could be exploited in strategies that use antibodies to 

Box 3 | Possible reasons for failure in Phase III trials targeting P-glycoprotein

Potential reasons for the failure of compounds that target P-glycoprotein (Pgp) in 
Phase III trials include142:

Alternative mechanisms of resistance 

Unfavourable pharmacological properties of the inhibitors:
• Low affinity (ineffective inhibition)

• Poor specificity (unrelated pharmacological activity)

• Low bioavailability at tumour site

Toxicity of the inhibitors:
• Primary toxicity of the first- and second-generation reversing agents (for example, 

hypotension, ataxia and immunosuppression)

• Secondary toxicity due to inhibition of Pgp in physiological sanctuaries such as bone 
marrow stem cells

Pharmacokinetic interactions143:
• Pgp modulators can decrease the systemic clearance of anticancer drugs, thereby 

increasing exposure to normal and malignant cells and so potentially increasing the 
severity and/or incidence of adverse effects associated with the anticancer therapy144.

• There is a considerable overlap in the substrate specificities and regulation of 
cytochrome P450 3A (CYP3A) and Pgp. CYP3A, the major Phase I drug-metabolizing 
enzyme, and Pgp have complementary roles in intestinal drug metabolism, where, 
through repeated extrusion and reabsorption, Pgp ensures elongated exposure of the 
drugs to the metabolizing enzyme145. Inhibition of Pgp can interfere with CYP3A-
mediated intestinal or liver metabolism, resulting in reduced drug clearance.

• Interaction with other ATP-binding cassette (ABC) transporters, such as ABCB4 and 
ABCB11, which results in compromised biliary flow146.

Empirical dose-modification of chemotherapy:
• To accommodate expected elevations in systemic drug exposure, some patients might 

have been over-dosed or under-treated.
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bridge effector molecules and cells. Anti-Pgp antibodies 
have been successfully used to destroy Pgp-expressing 
cells in antibody-mediated cytolysis experiments, and 
have also been used as immunotoxins110,111. More recently, 
Morizono et al.112 have used a mouse melanoma model 
engineered to express the human ABCB1 gene to show 
that metastatic cells can be successfully targeted with a vec-
tor linked to an anti-Pgp monoclonal antibody. Immune 
response to the anti-Pgp immunoglobulins and the toxic 
side effects expected in normal tissues expressing Pgp are 
concerns that have to be addressed before the widespread 
clinical use of these strategies. Future enhancements of the 
technology, such as the replacement of the monoclonal 
antibodies with peptide fragments, will be important for 
successful clinical applications.

Exploiting the paradoxical sensitivity of MDR cells. Gene 
expression studies have shown that MDR cells can be 
profoundly different from their sensitive counterparts31. 
Perhaps as a result of these differences, MDR cells that are 
cross-resistant to structurally and functionally unrelated 

drugs can simultaneously show paradoxical hypersensitiv-
ity to certain compounds. MDR cells were found to be 
collaterally sensitive to membrane-active agents such as 
the calcium-channel blocker verapamil; inhibitors such 
as PSC-833 or LY294002 (REFS 113–115); and various stress-
inducing compounds, including 2-deoxy-d-glucose116,117, 
tunicamycin and 5-fluorouracil118,119.

In an effort to catalogue compounds against which 
MDR cells might show collateral sensitivity, we character-
ized the expression profile of the 48 ABC transporters 
in the NCI60 cancer cell panel25. The NCI60 cell panel 
was set up by the Developmental Therapeutics Program 
of the NCI to screen the toxicity of chemical compound 
repositories120. We explored the relationship between 
ABC transporter expression levels and sensitivity to drugs 
or drug candidates, asking which of the transporters con-
fer resistance or sensitivity to various classes of agents. In 
particular, we searched for statistical correlations between 
the cell lines’ sensitivity to cancer drugs and the expres-
sion of ABC transporters. Using this pharmacogenomic 
approach, we identified strongly correlated ‘drug–gene’ 
pairs, in which the expression of an ABC transporter, 
most notably MDR1/Pgp, correlated with increased 
sensitivity to a drug. This correlation suggested that the 
toxicity of several compounds can be potentiated, rather 
than antagonized, by the MDR1 multidrug transporter. 
Follow-up studies have verified that cells become hyper-
sensitive to ‘MDR1-inverse’ compounds, such as NSC 
73306, in proportion to their Pgp function. The physi-
ological function of Pgp includes transmembrane trans-
port of a broad spectrum of endogenous substrates, some 
of which have a role in regulation of cell growth. Recent 
observations support the possibility that Pgp can promote 
cell survival by efflux-independent pathways, including 
the inhibition of caspase-dependent apoptosis121 or the 
reduction of ceramide levels through either the reduction 
of inner leaflet sphingomyelin pools or the modulation 
of the glucosylceramide synthase pathway122,123. In view 
of these findings, it can be speculated that downstream 
changes in the apoptosis-inducing pathways in MDR 
cells might be responsible for the preferential suscepti-
bility to MDR1-inverse compounds119. Cells expressing 
other ABC transporters could become similarly sensi-
tive. For example, increased MRP1 expression could 
be accompanied by the intracellular depletion of impor-
tant molecules, such as GSH, resulting in an increased 
susceptibility to oxidative stress124.

Conclusions
An ultimate goal in cancer therapy is to devise individu-
ally tailored treatment that targets growth-promoting 
pathways and circumvents drug resistance. In consider-
ing how to go about cataloguing important mechanisms 
of drug resistance in cancer, it makes sense to begin by 
focusing on the family of ABC transporters, as they 
are widely expressed in cancer cells and their capacity 
to confer drug resistance has been established, at least 
in vitro. Pgp represents one of the best-studied mecha-
nisms of resistance to hydrophobic anticancer drugs. It 
remains to be seen whether other ABC transporters will 
emerge as culprits for treatment failure.

Box 4 | Scheme of Phase III clinical trial design targeting ABC transporters

The following steps could be used to improve the design of Phase III clinical trials for 
agents that target ATP-binding cassette (ABC) transporters147,148:

Step 1: Assessing the impact of ABC transporters on drug resistance
Define and standardize methods and the scoring system to be used to determine 
whether a tumour expresses the ABC transporter of interest. Such standardized scoring 
systems have been successfully implemented in the case of other targeted therapies (that 
is, determination of HER2/neu and oestrogen receptor status for breast cancer therapy 
with trastuzumab and hormonal agents, respectively53). This requires rigorous analytical 
validation of all reagents, measurement technologies and tissue collection/storage 
procedures for all participating research sites149,150.

Step 2: Defining target patient groups
Enrol patients most likely to respond. Ideally, randomized trials should be undertaken, 
using large, meticulously profiled patient populations. As the beneficial effect of 
transporter inhibition will probably be confined to patients ‘positive’ for the transporter 
target, adequate transporter expression and/or function should be a criterion for trial 
enrolment. The targeted transporter(s) should be expressed at levels previously 
determined to have an adverse effect on prognosis. ABC transporter expression or 
function of haematological malignancies can be readily determined ex vivo using either 
immunoflow cytometry or fluorescent drug substrate efflux assays, respectively. 
Similarly, solid tumours can be evaluated for expression of ABC transporters using 
either mRNA or protein-based technologies; functional imaging using 99mTc-sestamibi 
would be complementary.

Step 3: Choice of appropriate treatment protocols
Because inhibitors have no inherent anticancer activity, they must be coadministered 
with cytotoxic agents. Improvement of therapy outcome is expected only if the 
chemotherapeutic regimens involve transported substrates. Chemotherapy drug 
combinations should be used at concentrations previously proven safe and effective in 
Phase I/II trials, taking into account potential pharmacokinetic interactions with either 
the parental drug compound or its metabolites.

Step 4: Monitoring drug levels and side effects
Drug pharmacokinetics and early signs of hepatic, neurological or bone marrow toxicity 
should be monitored closely.

Step 5: Monitoring efficacy by surrogate assays
To ensure abrogation of the multidrug-resistant phenotype, surrogate assays should be 
carried out to assess the effect of the inhibitor in each patient. This can be done either 
ex vivo, by using flow cytometry to measure P-glycoprotein (Pgp) function in CD56+ cells 
taken from patients treated with inhibitors, or ‘in vivo’ using 99mTc-sestamibi151 or other 
imaging modalities to directly image accumulation of Pgp substrates within tumours.
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